Index | index by Group | index by Distribution | index by Vendor | index by creation date | index by Name | Mirrors | Help | Search |
Name: libjpeg-turbo | Distribution: SUSE Linux Enterprise 15 |
Version: 2.1.1 | Vendor: SUSE LLC <https://www.suse.com/> |
Release: 150400.15.9 | Build date: Sun May 8 00:18:11 2022 |
Group: Unspecified | Build host: ibs-power9-10 |
Size: 590280 | Source RPM: libjpeg-turbo-2.1.1-150400.15.9.src.rpm |
Packager: https://www.suse.com/ | |
Url: https://sourceforge.net/projects/libjpeg-turbo | |
Summary: A SIMD-accelerated library for manipulating JPEG image files |
The libjpeg-turbo package contains a library of functions for manipulating JPEG images. It supports architecture-specific SIMD instructions, such as SSE/SSE2/AVX2, AltiVec, NEON, MIPS DSPR2, and Loongson MMI. It also includes the following command line utilities: djpeg - decompress a JPEG file to an image file jpegtran - lossless transformation of JPEG files rdjpgcom - display text comments from a JPEG file wrjpgcom - insert text comments into a JPEG file tjbench - a JPEG decompression/compression benchmark
BSD-3-Clause
* Wed Sep 29 2021 [email protected] - previous version updates fixes following bugs: CVE-2014-9092, CVE-2018-14498, CVE-2019-2201, CVE-2020-17541 (bsc#1128712, bsc#1186764, bsc#807183, bsc#906761) * Fri Aug 20 2021 [email protected] - version update to 2.1.1 1. Fixed a regression introduced in 2.1.0 that caused build failures with non-GCC-compatible compilers for Un*x/Arm platforms. 2. Fixed a regression introduced by 2.1 beta1[13] that prevented the Arm 32-bit (AArch32) Neon SIMD extensions from building unless the C compiler flags included -mfloat-abi=softfp or -mfloat-abi=hard. 3. Fixed an issue in the AArch32 Neon SIMD Huffman encoder whereby reliance on undefined C compiler behavior led to crashes ("SIGBUS: illegal alignment") on Android systems when running AArch32/Thumb builds of libjpeg-turbo built with recent versions of Clang. 4. Added a command-line argument (-copy icc) to jpegtran that causes it to copy only the ICC profile markers from the source file and discard any other metadata. 5. libjpeg-turbo should now build and run on CHERI-enabled architectures, which use capability pointers that are larger than the size of size_t. 6. Fixed a regression introduced by 2.1 beta1[5] that caused a segfault in the 64-bit SSE2 Huffman encoder when attempting to losslessly transform a specially-crafted malformed JPEG image. * Tue May 04 2021 [email protected] - disable SIMD for armv6hl, not available * Mon Apr 26 2021 [email protected] - version update to 2.1.0 lot of changes, see * https://github.com/libjpeg-turbo/libjpeg-turbo/releases/tag/2.0.90 * https://github.com/libjpeg-turbo/libjpeg-turbo/releases/tag/2.1.0 * Mon Jan 11 2021 [email protected] - Fix setting of FLOATTEST * Mon Dec 28 2020 [email protected] - version update to 2.0.6 1. Fixed "using JNI after critical get" errors that occurred on Android platforms when using any of the YUV encoding/compression/decompression/decoding methods in the TurboJPEG Java API. 2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`: - Fixed segfaults or "Corrupt JPEG data: premature end of data segment" errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or 4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 2.0.0[6] was a similar fix, but it did not cover all cases. - `jpeg_skip_scanlines()` now throws an error if two-pass color quantization is enabled. Two-pass color quantization never worked properly with `jpeg_skip_scanlines()`, and the issues could not readily be fixed. - Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when skipping past the end of an image. 3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW toolchains targetting Arm64 (AArch64) Windows binaries. 4. Fixed unexpected visual artifacts that occurred when using `jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC scan of a progressive JPEG image. 5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8 API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.) - modified sources % libjpeg-turbo.keyring * Wed Aug 12 2020 [email protected] - Update to version 2.0.5 * Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures in the libjpeg-turbo regression tests. Specifically, the jsimd_h2v1_downsample_dspr2() and jsimd_h2v2_downsample_dspr2() functions in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be fixed, and other functions that are incompatible with big endian MIPS CPUs are disabled when building libjpeg-turbo for such CPUs. * Fixed an oversight in the TJCompressor.compress(int) method in the TurboJPEG Java API that caused an error ("java.lang.IllegalStateException: No source image is associated with this instance") when attempting to use that method to compress a YUV image. * Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer overrun in cjpeg, TJBench, or the tjLoadImage() function if one of the values in a binary PPM/PGM input file exceeded the maximum value defined in the file's header and that maximum value was less than 255. libjpeg-turbo 1.5.0 already included a similar fix for binary PPM/PGM files with maximum values greater than 255. * The TurboJPEG API library's global error handler, which is used in functions such as tjBufSize() and tjLoadImage() that do not require a TurboJPEG instance handle, is now thread-safe on platforms that support thread-local storage. - Fix source verification - Drop patches fixed upstream: * ctest-depends.patch * libjpeg-turbo-CVE-2020-13790.patch - Run spec-cleaner * Remove package groups * Use make macros * Mon Jun 08 2020 [email protected] - security update - added patches fix CVE-2020-13790 [bsc#1172491], heap-based buffer over-read in get_rgb_row() in rdppm.c via a malformed PPM input file + libjpeg-turbo-CVE-2020-13790.patch * Sun Mar 29 2020 [email protected] - Upate to version 2.0.4: - bug 388 was fixed upstream https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388 - removed patches, as it is included in this release. * Fixed a regression in the Windows packaging system (introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed on the same system, only one of them could be uninstalled. * Fixed a signed integer overflow and subsequent segfault that occurred when attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench. * Fixed out-of-bounds write in tjDecompressToYUV2() and tjDecompressToYUVPlanes() (sometimes manifesting as a double free) that occurred when attempting to decompress grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with cjpeg -grayscale -sample 2x2). * Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images. This was known to cause a buffer overflow when attempting to decompress some such images using tjDecompressToYUV2() or tjDecompressToYUVPlanes(). * Fixed an issue, detected by ASan, whereby attempting to losslessly transform a specially-crafted malformed JPEG image containing an extremely-high-frequency coefficient block (junk image data that could never be generated by a legitimate JPEG compressor) could cause the Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].) Given that the buffer overrun was fully contained within the stack and did not cause a segfault or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor) is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk. The ARM 64-bit (ARMv8) NEON SIMD assembly code now stores constants in a separate read-only data section rather than in the text section, to support execute-only memory layouts. - libjpeg-turbo-issue-388.patch upstreamed * Tue Mar 17 2020 [email protected] - Added If statments for Fedora not having sertain openSUSE macros * Tue Nov 12 2019 [email protected] - fix upstream bug 388 [bsc#1156402] - added patches https://github.com/libjpeg-turbo/libjpeg-turbo/issues/388 + libjpeg-turbo-issue-388.patch * Sat Oct 05 2019 [email protected] - Update to version 2.0.3: * Fixed "using JNI after critical get" errors that occurred on Android platforms when passing invalid arguments to certain methods in the TurboJPEG Java API. * Fixed a regression in the SIMD feature detection code, introduced by the AVX2 SIMD extensions (2.0 beta1), that was known to cause an illegal instruction exception, in rare cases, on CPUs that lack support for CPUID leaf (or on which the maximum CPUID leaf has been limited by way of a BIOS setting.) * The 4:4:0 (h1v2) fancy (smooth) chroma upsampling algorithm in the decompressor now uses a similar bias pattern to that of the 4:2:2 (h2v1) fancy chroma upsampling algorithm, rounding up or down the upsampled result for alternate pixels rather than always rounding down. This ensures that, regardless of whether a 4:2:2 JPEG image is rotated or transposed prior to decompression (in the frequency domain) or after decompression (in the spatial domain), the final image will be similar. * Fixed an integer overflow and subsequent segfault that occurred when attempting to compress or decompress images with more than 1 billion pixels using the TurboJPEG API. * Fixed a regression introduced by 2.0 beta1[15] whereby attempting to generate a progressive JPEG image on an SSE2-capable CPU using a scan script containing one or more scans with lengths divisible by 16 would result in an error ("Missing Huffman code table entry") and an invalid JPEG image. * Fixed an issue whereby `tjDecodeYUV()` and `tjDecodeYUVPlanes()` would throw an error ("Invalid progressive parameters") or a warning ("Inconsistent progression sequence") if passed a TurboJPEG instance that was previously used to decompress a progressive JPEG image. * Wed Mar 27 2019 [email protected] - use -O0 for debugging like everywhere (better experience) * Wed Mar 13 2019 [email protected] - updated to version 2.0.2: 1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search path (rpath) from being embedded in the libjpeg-turbo shared libraries and executables for macOS and iOS. This caused a fatal error of the form "dyld: Library not loaded" when attempting to use one of the executables, unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the libjpeg-turbo shared libraries. 2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that occurred when attempting to load a BMP file with more than 1 billion pixels using the `tjLoadImage()` function. 3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to decompress a specially-crafted malformed JPEG image to a 256-color BMP using djpeg. 4. Fixed a floating point exception that occurred when attempting to decompress a specially-crafted malformed JPEG image with a specified image width or height of 0 using the C version of TJBench. 5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1, or 1x3 luminance and chrominance sampling factors. This is a non-standard way of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and chrominance sampling factors), but the JPEG format and the libjpeg API both allow it. 6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate incorrect PPM images when used with the `-colors` option. 7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which `ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE. 8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that occurred when compressing RGB images whose image rows were not 64-bit-aligned. - modified patches % ctest-depends.patch (refreshed) - deleted patches - libjpeg-turbo-CVE-2018-19644.patch (upstreamed) - libjpeg-turbo-CVE-2018-20330.patch (upstreamed) - added sources + libjpeg-turbo-2.0.2.tar.gz.sig + libjpeg-turbo.keyring * Thu Jan 24 2019 [email protected] - Use -Og for debug_build * Thu Jan 03 2019 [email protected] - security update * CVE-2018-20330 [bsc#1120646] + libjpeg-turbo-CVE-2018-20330.patch * Wed Jan 02 2019 [email protected] - security update * CVE-2018-19644 [bsc#1117890] + libjpeg-turbo-CVE-2018-19644.patch * Mon Dec 03 2018 [email protected] - asan_build: build ASAN included - debug_build: build more suitable for debugging * Tue Nov 13 2018 [email protected] - update to version 2.0.1: * jsimd_quantize_float_dspr2() and jsimd_convsamp_float_dspr2() functions in the MIPS DSPr2 SIMD extensions are now disabled at compile time if the soft float ABI is enabled * Fixed a regression in the SIMD feature detection code, introduced by the AVX2 SIMD extensions * Fixed out-of-bounds read in cjpeg that occurred when attempting to compress a specially-crafted malformed color-index (8-bit-per-sample) Targa file * Mon Sep 24 2018 [email protected] - Define FLOATTEST=64bit on ppc - ctest-depends.patch: Add missing testsuite depedencies * Wed Aug 08 2018 [email protected] - Update description and switch out MMX/SSE by the more generic term SIMD. * Wed Aug 01 2018 [email protected] - Version update to 2.0.0: * Cmake as a buildsystem * avx support * Better error handling * More use of SSE2 - Drop patch libjpeg-1.4.0-ocloexec.patch; conflicts, would be better handled by upstream anyway - Drop patches merged upstream: * libjpeg-turbo-CVE-2018-11813.patch * libjpeg-turbo-CVE-2018-1152.patch * Tue Jun 19 2018 [email protected] - security update: * CVE-2018-1152 [bsc#1098155] + libjpeg-turbo-CVE-2018-1152.patch * Tue Jun 12 2018 [email protected] - security update: * CVE-2018-11813 [bsc#1096209] + libjpeg-turbo-CVE-2018-11813.patch * remove redundant libjpeg-turbo-CVE-2017-15232.patch [bsc#1062937#c17] * Mon Dec 18 2017 [email protected] - - update to version 1.5.3 1. Fixed a NullPointerException in the TurboJPEG Java wrapper that occurred when using the YUVImage constructor that creates an instance backed by separate image planes and allocates memory for the image planes. 2. Fixed an issue whereby the Java version of TJUnitTest would fail when testing BufferedImage encoding/decoding on big endian systems. 3. Fixed a segfault in djpeg that would occur if an output format other than PPM/PGM was selected along with the `-crop` option. The `-crop` option now works with the GIF and Targa formats as well (unfortunately, it cannot be made to work with the BMP and RLE formats due to the fact that those output engines write scanlines in bottom-up order.) djpeg will now exit gracefully if an output format other than PPM/PGM, GIF, or Targa is selected along with the `-crop` option. 4. Fixed an issue whereby `jpeg_skip_scanlines()` would segfault if color quantization was enabled. 5. TJBench (both C and Java versions) will now display usage information if any command-line argument is unrecognized. This prevents the program from silently ignoring typos. 6. Fixed an access violation in tjbench.exe (Windows) that occurred when the program was used to decompress an existing JPEG image. 7. Fixed an ArrayIndexOutOfBoundsException in the TJExample Java program that occurred when attempting to decompress a JPEG image that had been compressed with 4:1:1 chrominance subsampling. 8. Fixed an issue whereby, when using `jpeg_skip_scanlines()` to skip to the end of a single-scan (non-progressive) image, subsequent calls to `jpeg_consume_input()` would return `JPEG_SUSPENDED` rather than `JPEG_REACHED_EOI`. 9. `jpeg_crop_scanlines()` now works correctly when decompressing grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with `cjpeg -grayscale -sample 2x2`). * Thu Oct 12 2017 [email protected] - security update: * CVE-2017-15232 [bsc#1062937] + libjpeg-turbo-CVE-2017-15232.patch * Thu Oct 12 2017 [email protected] - Update to version 1.5.2 + Fixed several memory leaks in the TurboJPEG API library that could occur if the library was built with certain compilers and optimization levels. + The libjpeg-turbo memory manager will now honor the max_memory_to_use structure member in jpeg_memory_mgr, which can be set to the maximum amount of memory (in bytes) that libjpeg-turbo should use during decompression or multi-pass (including progressive) compression. This limit can also be set using the JPEGMEM environment variable or using the -maxmemory switch in cjpeg/djpeg/jpegtran. + TJBench will now run each benchmark for 1 second prior to starting the timer, in order to improve the consistency of the results. Furthermore, the -warmup option is now used to specify the amount of warmup time rather than the number of warmup iterations. + Fixed an error (short jump is out of range) that occurred when assembling the 32-bit x86 SIMD extensions with NASM versions prior to 2.04. + Fixed a regression introduced by 1.5 beta1[11] that prevented the Java version of TJBench from outputting any reference images (the -nowrite switch was accidentally enabled by default.) libjpeg-turbo should now build and run with full AltiVec SIMD acceleration on PowerPC-based AmigaOS 4 and OpenBSD systems. * Wed Jan 18 2017 [email protected] - set build date to enable reproducible builds * Wed Sep 21 2016 [email protected] - Update to version 1.5.1 fate#324061 + Fix for PowerPC platforms lacking AltiVec instructions + Fix ABI problem with clang/llvm on aarch64. + Fancy upsampling is now supported when decompressing JPEG images that use 4:4:0 (h1v2) chroma subsampling. + If merged upsampling isn't SIMD-accelerated but YCbCr-to-RGB conversion is, then libjpeg-turbo will now disable merged upsampling when decompressing YCbCr JPEG images into RGB or extended RGB output images. This significantly speeds up the decompression of 4:2:0 and 4:2:2 JPEGs on ARM platforms if fancy upsampling is not used (for example, if the -nosmooth option to djpeg is specified.) + The TurboJPEG API will now decompress 4:2:2 and 4:4:0 JPEG images with 2x2 luminance sampling factors and 2x1 or 1x2 chrominance sampling factors. + Fixed an unsigned integer overflow in the libjpeg memory manager. + Fixed additional negative left shifts and other issues reported by the GCC and Clang undefined behavior sanitizers when attempting to decompress specially-crafted malformed JPEG images. None of these issues posed a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. + Fixed an out-of-bounds array reference, introduced by 1.4.902 and detected by the Clang undefined behavior sanitizer, that could be triggered by a specially-crafted malformed JPEG image with more than four components. Because the out-of-bounds reference was still within the same structure, it was not known to pose a security threat, but removing the warning makes it easier to detect actual security issues, should they arise in the future. * Wed Jun 08 2016 [email protected] - Update to version 1.5.0 + Fixed an issue whereby a malformed motion-JPEG frame could cause the "fast path" of libjpeg-turbo's Huffman decoder to read from uninitialized memory. + Added libjpeg-turbo version and build information to the global string table of the libjpeg and TurboJPEG API libraries. + Fixed a couple of issues in the PPM reader that would cause buffer overruns in cjpeg if one of the values in a binary PPM/PGM input file exceeded the maximum value defined in the file's header. libjpeg-turbo 1.4.2 already included a similar fix for ASCII PPM/PGM files. Note that these issues were not security bugs, since they were confined to the cjpeg program and did not affect any of the libjpeg-turbo libraries. + Fixed an issue whereby attempting to decompress a JPEG file with a corrupt header using the tjDecompressToYUV2() function would cause the function to abort without returning an error and, under certain circumstances, corrupt the stack. This only occurred if tjDecompressToYUV2() was called prior to calling tjDecompressHeader3(), or if the return value from tjDecompressHeader3() was ignored (both cases represent incorrect usage of the TurboJPEG API.) + The jpeg_stdio_src(), jpeg_mem_src(), jpeg_stdio_dest(), and jpeg_mem_dest() functions in the libjpeg API will now throw an error if a source/destination manager has already been assigned to the compress or decompress object by a different function or by the calling program. * Thu Oct 08 2015 [email protected] - Update to version 1.4.2 + Crash fixes + clang compatibility fixes + See the included ChangeLog.txt for the details - Drop libjpeg-turbo-1.4.0-int32.patch, not needed anymore. - Drop libjpeg-turbo-remove-test.patch, fixed upstream. * Thu Mar 05 2015 [email protected] - Remove useless same-name provides. Use download URLs not dependent on directory structure. * Mon Mar 02 2015 [email protected] - Remove float tests with new libjpeg-turbo-remove-test.patch same as Fedora bug 1161585 related to upstream issue https://sourceforge.net/p/libjpeg-turbo/bugs/83/ * Sat Jan 10 2015 [email protected] - Update to version 1.4.0 + Fixed a build issue on OS X PowerPC platforms (md5cmp failed to build because OS X does not provide the le32toh() and htole32() functions.) + The non-SIMD RGB565 color conversion code did not work correctly on big endian machines. This has been fixed. + Fixed an issue in tjPlaneSizeYUV() whereby it would erroneously return 1 instead of -1 if componentID was > 0 and subsamp was TJSAMP_GRAY. + Fixed an issue in tjBufSizeYUV2() wherby it would erroneously return 0 instead of -1 if width was < 1. + The Huffman encoder now uses clz and bsr instructions for bit counting on ARM64 platforms (see 1.4 beta1 [5].) + The close() method in the TJCompressor and TJDecompressor Java classes is now idempotent. Previously, that method would call the native tjDestroy() function even if the TurboJPEG instance had already been destroyed. This caused an exception to be thrown during finalization, if the close() method had already been called. The exception was caught, but it was still an expensive operation. + The TurboJPEG API previously generated an error ("Could not determine subsampling type for JPEG image") when attempting to decompress grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with 'cjpeg -grayscale -sample 2x2'). Subsampling technically has no meaning with grayscale JPEGs, and thus the horizontal and vertical sampling factors for such images are ignored by the decompressor. However, the TurboJPEG API was being too rigid and was expecting the sampling factors to be equal to 1 before it treated the image as a grayscale JPEG. + cjpeg, djpeg, and jpegtran now accept an argument of -version, which will print the library version and exit. + Referring to 1.4 beta1 [15], another extremely rare circumstance was discovered under which the Huffman encoder's local buffer can be overrun when a buffered destination manager is being used and an extremely-high-frequency block (basically junk image data) is being encoded. Even though the Huffman local buffer was increased from 128 bytes to 136 bytes to address the previous issue, the new issue caused even the larger buffer to be overrun. Further analysis reveals that, in the absolute worst case (such as setting alternating AC coefficients to 32767 and -32768 in the JPEG scanning order), the Huffman encoder can produce encoded blocks that approach double the size of the unencoded blocks. Thus, the Huffman local buffer was increased to 256 bytes, which should prevent any such issue from re-occurring in the future. + The new tjPlaneSizeYUV(), tjPlaneWidth(), and tjPlaneHeight() functions were not actually usable on any platform except OS X and Windows, because those functions were not included in the libturbojpeg mapfile. This has been fixed. + Restored the JPP(), JMETHOD(), and FAR macros in the libjpeg-turbo header files. The JPP() and JMETHOD() macros were originally implemented in libjpeg as a way of supporting non-ANSI compilers that lacked support for prototype parameters. libjpeg-turbo has never supported such compilers, but some software packages still use the macros to define their own prototypes. Similarly, libjpeg-turbo has never supported MS-DOS and other platforms that have far symbols, but some software packages still use the FAR macro. A pretty good argument can be made that this is a bad practice on the part of the software in question, but since this affects more than one package, it's just easier to fix it here. + Fixed issues that were preventing the ARM 64-bit SIMD code from compiling for iOS, and included an ARMv8 architecture in all of the binaries installed by the "official" libjpeg-turbo SDK for OS X. - Adapt patches to upstream changes libjpeg-ocloexec.patch > libjpeg-1.4.0-ocloexec.patch libjpeg-turbo-1.3.0-int32.patch > libjpeg-turbo-1.4.0-int32.patch - Remove libjpeg-turbo-CVE-2014-9092.patch; fixed on upstream release - Bump tminor to 1 * Thu Nov 27 2014 [email protected] - security update CVE-2014-9092 [bnc#906761] * added libjpeg-turbo-CVE-2014-9092.patch * Wed Oct 15 2014 [email protected] - Obsolete jpeg version 6b, 8.0.1 and 8.0.2 to avoid conflicts during zypper dup
/usr/bin/cjpeg /usr/bin/djpeg /usr/bin/jpegtran /usr/bin/rdjpgcom /usr/bin/tjbench /usr/bin/wrjpgcom /usr/share/doc/packages/libjpeg-turbo /usr/share/doc/packages/libjpeg-turbo/ChangeLog.md /usr/share/doc/packages/libjpeg-turbo/README.md /usr/share/doc/packages/libjpeg-turbo/change.log /usr/share/doc/packages/libjpeg-turbo/usage.txt /usr/share/doc/packages/libjpeg-turbo/wizard.txt /usr/share/man/man1/cjpeg.1.gz /usr/share/man/man1/djpeg.1.gz /usr/share/man/man1/jpegtran.1.gz /usr/share/man/man1/rdjpgcom.1.gz /usr/share/man/man1/wrjpgcom.1.gz
Generated by rpm2html 1.8.1
Fabrice Bellet, Tue Jul 9 17:57:49 2024